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1. Cluster categories (acyclic)

Let Q = (Q0, Q1, s, t) be a finite acyclic quiver, where Q0 is the set of vertices satisfying
|Q0| <∞, and Q1 is the set of arrows, and s and t indicate the start vertex and target vertex

of an arrow (respectively), i.e. we denote s(α)
α→ t(α) for all α ∈ Q1.

1.1. Representations of quivers, repk(Q). We denote by repk(Q) the category of finite
dimensional representations of the quiver Q over k. The objects of the category repk(Q) are:

V = ({Va}a∈Q0 , {Vα}α∈Q1),
1
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where {Va}a∈Q0 are finite dimensional k-vector spaces and {Vα : Vs(α) → Vt(α)}α∈Q1 are k-
linear transformations.

The morphisms in repk(Q) are given by f = (fa)a∈Q0 : V → W , such that the following
diagrams are commutative:

Vs(α)
Vα //

fs(α)

��

Vt(α)

ft(α)

��

Ws(α)
Wα // Wt(α)

Let f = (fa)a∈Q0 : V → W and g = (ga)a∈Q0 : U → V be morphisms in repk(Q), then the
composition f ◦ g is defined by (f ◦ g)a = fa ◦ ga.

Note that repk(Q) is an abelian category. The category repk(Q) is equivalent to the category
of finitely generated modules of the path algebra kQ, i.e. repk(Q) ∼= mod(kQ).

The Auslander-Reiten quiver (AR-quiver) is a nice way to organize indecomposable modules,
irreducible maps and almost split sequences (AR-sequences) of the module category.

Example 1.1.1. Let Q be a quiver of type A4:

1 2oo 3oo 4oo

Then the AR-quiver of the category repk(Q) looks like:

k ← k ← k ← k

**
k ← k ← k ← 0

**

44

0← k ← k ← k

**
k ← k ← 0← 0

**

44

0← k ← k ← 0

**

44

0← k ← k ← k

**
k ← 0← 0← 0

44

0← k ← 0← 0

44

0← 0← k ← 0

44

0← 0← 0← k

Remark 1.1.2. The category repk(Q) is a hereditary category, i.e.
• the submodules of projectives are projective,
• or the quotients of injectives are injective,
• or Exti(X,Y ) = 0 for ∀i ≥ 2.

1.2. The derived category of kQ, Db(kQ). Since repk(Q) is hereditary, all indecomposable
objects in Db(kQ) are isomorphic to shifts of indecomposable modules. The AR-quiver of
Db(kQ) looks like:

. . . rep(kQ)[−1] rep(kQ) rep(kQ)[1] . . .

If X and Y are kQ-modules, then
• HomDb(kQ)(X,Y ) ∼= HomkQ(X,Y ).

• HomDb(kQ)(X,Y [1]) ∼= Ext1
kQ(X,Y ).

• HomDb(kQ)(X,Y [n]) = 0 for all ∀n > 1 or n < 0.

Example 1.2.1. Let Q be the same as Example 1.1.1. The AR quiver of Db(kQ) looks like:

· · ·

$$

I4[−1]

$$

P4

""

P1[1]

%%

S2[1]

%%

S3[1]

&&

· · ·

. . . I3[−1]

%%

88

P3

!!

<<

I2

""

;;

P2[1]

99

$$

S3
S2

[1]

$$

99

I3[1] . . .

$$

99

· · ·

$$

;;

P2

$$

;;

S3
S2

""

==

I3

%%

::

P3[1]

%%

::

I2[1]

&&

99

· · ·

· · · P1

88

S2

<<

S3

;;

I4

99

P4[1]

99

· · ·

99
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Let A → B → C → A[1] be an AR triangle, then C ∼= τ−A where τ− is the inverse
Auslander-Reiten translation. In mod(kQ), τ− = TrD is the transpose of the dual. Notice:
• τ− is a functor Db(kQ)→ Db(kQ).
• The shift [1] is a functor Db(kQ)→ Db(kQ).
• So F = τ−[1] is also a functor Db(kQ)→ Db(kQ).

1.3. The cluster category CQ of a quiver Q. [BMRRT] The cluster category CQ is the orbit

category of Db(kQ) by the functor F = τ−[1]. The objects in CQ are given by {X̃}, which are

the orbits of objects X in Db(kQ). The morphisms in CQ are defined as:

HomCQ(X̃, Ỹ ) =
∐
i∈Z

HomDb(kQ)(X,F
iY ),

where X,Y are representatives of X̃ and Ỹ respectively.
Notice that

∏
i∈Z

HomDb(kQ)(X,F
iY ) is a finite sum. In fact, if the representatives X and Y

are kQ-modules, then HomDb(kQ)(X,F
iY ) = 0 for all i 6= 0, 1.

Theorem 1.3.1 (B.Keller). The cluster category CQ is a triangulated category.

2. Continuous cluster categories I

This work is done and published in [IT15], [IT11].

2.1. Representations of the real line R over k, denoted by repkR. The category repkR
will consist of locally finite dimensional representations of R over k. These representations will
be similar to the representations of the quiver An with linear orientation. Recall that a typical

indecomposable representation of an An type quiver Q with linear orientation V = ({Vi}, Vt′
Vα←

Vt) looks like:

0← k ← k ← k ← 0← 0.

Typical (non-zero) morphisms between kQ looks like:

0

0
��

koo

0
��

koo

λ
��

koo

λ
��

0oo

0
��

0oo

0
��

0 0oo koo koo koo 0oo

As a natural generalization, we can define the indecomposable representations of R.

Definition 2.1.1. Let −∞ ≤ a < b < ∞ be real numbers, define the indecomposable repre-
sentation

V(a,b] :=

(
V(a,b](t) =

{
k a < t ≤ b
0 else

, V(a,b](t
′)

=← V(a,b](t)

)
.

Graphically the representation V(a,b] looks like an open interval:

(
a

]
b

Morphisms fλ : V(a,b] → V(c,d] are given by: let x ∈ V(a,b](t). Then

fλ(x) =

{
λx c < t ≤ b
0 else.
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Graphically,

V(a,b]

V(c,d]

fλ

(
a

]
b

(
c

]
d

· · ·
fλ(t)
· · ·

The composition of morphisms is defined point-wise.
Denote by repk(R) the category of (locally finite dimensional) k-representations of the real

line R, whose objects are finite sums of {V(a,b]}, (−∞ ≤ a < b <∞) and morphisms are linear
sums of {fλ}. Notice that any object in repk(Q) is of finite dimension over k at each point.

Remark 2.1.2. • The category repk(R) is an abelian category. For example, let a < c < b < d
be real numbers, then the non-zero morphism fλ : V(a,b] → V(c,d] has kernel and cokernel as:

V(a,b]

V(c,d]

Ker fλ = V(a,c]

Coker fλ = V(b,d]

fλ

(
a

]
b

(
c

]
d

(
a

]
c

(
b

]
d

fλ(t)

• repk(R) has indecomposable projectives Pb = V(−∞,b].
• repk(R) has enough projective objects, i.e. for each object V(a,b], there is an epimorphism

Pb → V(a,b].

• repk(R) does not have injectives.

Example 2.1.3. We show two examples of exact sequences in repk(R):

(1) 0 // V(a,c]
// V(a,d]

// V(c,d]
// 0 for a < c < d.

(2) 0 // V(a,c]
// V(a,d] ⊕ V(b,c]

// V(b,d]
// 0 for a < b < c < d.

Graphically,

(
a

|
b

]
c

(
a

|
b

|
c

]
d

(
b

]
c

(
b

|
c

]
d
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Usually we identify the category repkR with the category of finitely presented objects preskR
defined in the following way:

The indecomposable objects in preskR are either monomorphisms Pa → Pb, for a < b or
0→ Pb. The objects of preskR are finite sums of indecomposable objects and the morphisms
are commutative diagrams.

We can show an equivalence of categories preskR ∼= repkR, through the correspondence:

{Pa → Pb | a < b} ↔ V(a,b]

{0→ Pb} ↔ Pb.

2.2. Special subcategory of repkR, denoted by AR. Let AR be the full subcategory of
repkR ∼= preskR closed under direct sums of objects V(a,b] in repkR with ∞ < a < 0 < b or
equivalently {Pa → Pb} ∈ preskR with a < 0 < b.

Remark 2.2.1. • The subcategory AR is not an abelian category. Consider the following
(non-zero) morphism f : V(−3,2] → V(−3,7]. It is easy to check that f is a monomorphism
in AR, so Ker f is the zero morphism g : 0 → V(−3,2]. It is also easy to check that f is an

epimorphism in AR, so Coker f is a zero morphism h : V(−3,7] → 0. But then Coker g � Kerh.
• In fact, for any non-zero map f : V(a,b] → V(c,d] in AR we have Coker Ker f 6= Ker Coker f .

2.3. The map AR → R2. This will be a map from indecomposable objects to the points in
R2. (This is similar to the map of indecomposable modules to the points of AR-quiver.)

Define the map Ψ : AR → R2 on indecomposable objects by:

Ψ(V(a,b]) = (− ln(−a), ln b) ∈ R2.

It is easy to see Ψ is an onto.

2.4. R2 as an additive category. We want to describe R2 as a category with indecomposable
objects being the points (x, y). To emphasize that each point (x, y) is considered as an object,
we usually denote it by M(x,y). Morphisms are given by

HomR2(M(x,y),M(x′,y′)) =

{
k x ≤ x′, y ≤ y′

0 else.

In fact, Ψ is a functor AR → R2. Using Ψ, we can view the morphisms in AR between
indecomposable objects as the lines between the corresponding points on the plane R2. For
example: monomorphisms V(a,b] → V(a,c] for b ≤ c are vertical and epimorphisms V(a,c] → V(b,c]

for a ≤ b are horizontal.

Example 2.4.1. Under Ψ, the morphisms V(−1, 1
2

] → V(−1,1] → V(−1,2] correspond to the

morphisms M(0,ln 1
2

) →M(0,0) →M(0,ln 2), graphically

•M(0,ln 1
2
)

•M(0,0)

•M(0,ln 2)
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The morphisms V(−2,1] → V(−1,1] → V(− 1
2
,1) correspond to the morphismsM(− ln 2,0) →M(0,0) →

M(ln 2,0), graphically

•
M(− ln 2,0)

•
M(0,0)

•
M(ln 2,0)

The support of the functor HomR2(M(x,y),−) is the northeast part of M(x,y) on the plane which
looks like

•
M(x,y)

2.5. Certain Frobenius subcategories of R2, denoted by Fr. Let r ∈ R>0. The category
Fr is defined to be the full subcategory of R2 with indecomposable objects {M(x,y) | |x−y| ≤ r}.

Definition 2.5.1. An exact structure on any additive category F is given by:
A collection of exact sequences E = {0→ A→ B → C → 0} satisfying the following:
• 0→ 0→ 0→ 0→ 0 ∈ E .
• E is closed under pull-backs, i.e. suppose 0→ A→ B → C → 0 ∈ E and f : X → C is a

morphism in F , then there exists an exact sequence 0→ A→ E → X → 0 ∈ E , such that the
following diagram is commutative:

0 // A // E //

��

X //

f
��

0

0 // A // B // C // 0.

• E is closed under push-outs, i.e. suppose 0 → A → B → C → 0 ∈ E and f : A → X is a
morphism in F , then there exists an exact sequence 0→ X → E → C → 0 ∈ E , such that the
following diagram is commutative:

0 // A //

f
��

B //

��

C // 0

0 // X // E // C // 0.

All the morphisms g such that 0→ A→ B
g→ C → 0 ∈ E are defined to be epimorphisms and

all the morphisms f such that 0→ A
f→ B → C → 0 ∈ E are defined to be monomorphisms.

• Epimorphisms are closed under compositions.
• Monomorphisms are closed under compositions.

Remark 2.5.2. (a) In the definition of exact structure, it suffices to assume that epimorphisms
are closed under compositions or monomorphisms are closed under compositions.
(b) An additive category with an exact structure is called an exact category.
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Proposition 2.5.3. For each r ∈ R the category Fr is an exact category where the collection
E consists of special exact sequences:

0 // ⊕i∈IM(xi,yi)
// ⊕j∈JM(x′j ,y

′
j)

// ⊕t∈TM(x′′t ,y
′′
t )

// 0

satisfying {xi}i∈I ∪ {x′′t }t∈T = {x′j}j∈J and {yi}i∈I ∪ {y′′t }t∈T = {y′j}j∈J .

Example 2.5.4. We graphically show two examples of typical exact sequences in Fr:
0 // M(x,y)

// M(x′,y) ⊕M(x,y′)
// M(x′,y′)

// 0,

0 // M(x,y)
// M(x,y′′) ⊕M(x′,y′) ⊕M(x′′,y)

// M(x′,y′′) ⊕M(x′′,y′)
// 0.

M(x,y)

M(x,y′)
M(x′,y′)

M(x′,y)

M(x,y) M(x′′,y)

M(x,y′′)

M(x′,y′′)

M(x′,y′)

M(x′′,y′)

Recall that the projective objects in an exact category are P such that for any exact sequence
0→ A→ B → C → 0 ∈ E , any morphism f : P → C factors through B. The injective objects
are defined dually.

Proposition 2.5.5. {M(x,x+r),M(x,x−r)} are indecomposable projective-injective objects in Fr
and all indecomposable projective-injective objects in Fr are of this form.

Definition 2.5.6. An exact category X is called Frobenius if
• X has enough projectives (i.e. for any object X, there is an epimorphism P → X with P
projective.)
• X has enough injectives (i.e. for any object X, there is a monomorphism X → I with I
injective.)
• An object in X is projective if and only if it is injective.

Theorem 2.5.7. The exact category Fr is a Frobenius category.

Additionally, Fr has the following property:
• For any object X ∈ Fr, there is a projective cover P → X.
• For any object X ∈ Fr, there is an injective envelop X → I.
• For each indecomposable object X ∈ Fr, there is an exact sequence:

0→ X → Q→ ΣX → 0,

where Q is a projective-injective object and ΣX is again indecomposable.
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Example 2.5.8. By definition, it is easy to compute ΣM(x,y)
∼= M(y+r,x+r), graphically:

M(x,y)

ΣM(x,y)

2.6. Continuous derived category Dr as the stable category of Fr. Define the stable
category Fr as follows: Obj(Fr) = Obj(Fr). The morphisms are defined by

HomFr(X,Y ) := HomFr(X,Y )/P (X,Y ),

where P (X,Y ) is the subgroup of morphisms X → Y which factor through any projective
object in Fr.

Example 2.6.1. We show an example of SuppHom(M(x,y),−) in the stable category Fr.

M(x,y)

◦

◦

From the picture one can see that Fr does not have Serre duality, and hence no Auslander
Reiten translation. (The existence of Serre functor suggests HomFr(X,−) ∼= DHomFr(−, SX),

but the support of any representable functor HomFr(X,−) is never the same as the support

of any representable functor HomFr(−, Y ).)

2.7. Triangulated structure of Dr.

Theorem 2.7.1. [H] Let F be a Frobenius category. Then the stable category F is a triangu-
lated category.

Recall that T is a triangulated category if:
• There exists a natural equivalence Σ : T → T .
• There exists a collection of triangles E satisfying several axioms:
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(TR1) (i) E is closed under isomorphism. (ii) For any morphism f : X → Y , there exists a

triangle X
f→ Y

g→ Z
h→ ΣX in E . (iii) X

=→ X → 0→ ΣX ∈ E .

(TR2) If X
f→ Y

g→ Z
h→ ΣX is a triangle, then so is Y

g→ Z
h→ ΣX

−Σf→ ΣY .

(TR3) For two triangles X
f→ Y

g→ Z
h→ ΣX and X ′

f ′→ Y ′
g′→ Z ′

h′→ ΣX ′ in E . If there are
morphisms u and v such that the following diagram is commutative

X
f
//

u
��

Y

v
��

X ′
f ′
// Y ′,

then there is a morphism w such that the following diagram is commutative:

X
f
//

u
��

Y

v
��

g
// Z

w
��

h // ΣX

Σu
��

X ′
f ′
// Y ′

g′
// Z ′

h′ // ΣX ′.

(TR4) (Octahedral axiom) . . . This is too long to state it here.

Proposition 2.7.2. Let X
f→ Y

g→ Z
h→ ΣX be a triangle in a triangulated category T , then

for any object U there is a long exact sequence:

· · · → Hom(U,X)→ Hom(U, Y )→ Hom(U,Z)→ Hom(U,ΣX)→ Hom(U,ΣY )→ · · · .

Also recall that in a Frobenius category F , for each morphism f : A→ B, one can take the
push out with the injective envelope i : A→ Q and obtain the following commutative diagram:

A

f
��

i // Q

q

��

p
// ΣA

B
g
// C

h // ΣA

Then A
f→ B

g→ C
h→ ΣA is a distinguished triangle in the stable category F and all the

triangles in F is isomorphic to such triangles.
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Example 2.7.3. Here is a typical example of a triangle A
f→ B

g→ C
h→ ΣA in Fr.

A i2
Q2

q2

i1

Q1

q1 C1

B

g1
g2

C2

h1 ΣA

h2

f

Remark 2.7.4. Because of similarities with the derived categories for acyclic quivers, we
denote the stable category Fr by Dr and sometimes call it continuous derived category.

2.8. Orbit categories of Dr, denoted by Or,s. For each number s ∈ R>0, we can define a
functor Fs on indecomposable objects as follows:

Fs(M(x,y)) := M(y+s,x+s).

Graphically,

M(x,y)

Fs(M(x,y))

sr

Definition 2.8.1. Define the orbit category Or,s = Fr/Fs as follows:

The objects of Or,s are the orbits of objects in Fr. Denote the orbits of M(x,y) by M̃(x,y).

The morphisms are defined by HomOr,s(M̃(x,y), M̃(x′,y′)) =
∐
i∈Z HomFr(M(x,y), F

i
sM(x′,y′)).

Notice that
∐
i∈Z HomFr(M(x,y), F

i
sM(x′,y′)) is a finite sum for fixed r and s.

2.9. When is Or,s triangulated?

Theorem 2.9.1. [IT15] The orbit category Or,s is a triangulated category if and only if s ≥ r.



CONTINUOUS CLUSTER CATEGORIES 11

2.10. When does Or,s have a cluster structure? i.e. for which r and s is there a cluster
structure in the sense of Buan, Iyama, Reiten, Scott paper [BIRS]?

Definition 2.10.1. [BIRS] A cluster structure on a triangulated category X is a collection of
subcategories {T } satisfying:

(1) Given any indecomposable object Ti ∈ T , there exists a unique indecomposalbe object
T ∗i such that add(indT \{Ti} ∪ {T ∗i }) ∈ T ; replacing T by T \{Ti} ∪ {T ∗i } is called
mutation of T at Ti.

(2) The objects Ti and T ∗i are related by triangles:

T ∗i
g→ B

f→ Ti → T ∗i [1] and Ti
g′→ B′

f ′→ T ∗i → Ti[1]

where f and f ′ are right add(T \Ti)-approximations of Ti and T ∗i (respectively),
and g and g′ are left add(T \Ti)-approximation of T ∗i and Ti (respectively).

(3) The quivers of categories T do not contain any 1- or 2-cycles.
(4) The quivers of categories T and µi(T ) = (T \Ti) ∪ T ∗i are related according to Fomin-

Zelevinsky mutations.

Theorem 2.10.2. [IT15] Let r, s ∈ R>0. The orbit category Or,s has a cluster structure if and
only if either s = r or r

s = n+1
n+3 for some n ∈ Z>0.

Definition 2.10.3. When r = s, denote the orbit category Fr/Fs = Or,s =: Cr. This category
is called continuous cluster category.

Theorem 2.10.4. [IT15] If r
s = n+1

n+3 then the cluster category of An is embedded in Or,s as a
triangulated subcategory.

2.11. Cluster tilting subcategories in the continuous cluster category Cr. By defini-
tion Cr = Or,r = Fr/Fr. A fundamental domain of Cr can be chosen as a triangle area:

fundamental
domain

We now describe a collection of subcategories {T } which form a cluster structure on the orbit
category Or,r, which was a motivation for the term ”continuous cluster category”. This was
used in the proof of the Theorem 2.10.2.
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Proposition 2.11.1. Let Or,r be the orbit category. Let {T } be the collection of all subcate-
gories T of Or,r where each T satisfies the following properties:

(1) For any two non-isomorphic Ti, Tj in T , HomCr(Ti, Tj)⊕HomCr(Tj , Ti) = k or 0,
(2) The set of all representatives of all indecomposable objects of T forms a discrete subset

of points in R2,
(3) The subcategory T is maximal with respect to the above properties.

Example 2.11.2. This is an example of some objects in a cluster tilting subcategory T in Cr.
Some objects are indicated with their representatives in the fundamental domain, and also
with another representative of the same object, outside of the fundamental domain.
The chosen objects all satisfy conditions (1) and (2).
In order to satisfy condition (3), infinitely many objects must be included, i.e. T contains
infinitely many indecomposable objects (the picture only lists first a few of them).

A1

A1

A2

A2

A3

A3

B1

B1

B2

B2

•
•

•

•
•

•

•

•

•
•
•
•
•
•
•

Remark 2.11.3. The continuous cluster category Cr, in some sense, is quite different from
the cluster categories of acyclic quivers:

(1) The categories Cr and Cr′ are isomorphic for all r, r′ ∈ R>0.
(2) X ∼= ΣX for all objects X in Cr.
(3) There is no Serre functor on Cr. Reason: from the above description of the fundamental

domain, the support of HomCr(A1, ) is the square starting at A1 which includes bottom
and left boundaries but does not include top and right. However, support of each
HomCr( , Y ) is a square which includes top and right boundaries, but does not include
left and bottom. Therefore fon any endofunctor S on Cr, the support of HomCr(X, )
can never be equal to the support of HomCr( , SX).

(4) There are no AR-triangles in Cr. Reason: There are no right minimal almost split
maps, since there are no right minimal maps of any kind.

(5) The continuous cluster category Cr is not 1-CY.
Reason: In general HomCr(X,Y ) 6∼= DHomCr(Y,ΣX) = HomCr(Y,X). For example
0 6= HomCr(A1, A2) 6∼= DHomCr(A2, A1) = 0.

(6) Cr is not 2-CY. Cr is not n-CY for any n. Reason: the same as above.

2.12. Ideal triangulations of the hyperbolic plane h. Each cluster tilting subcategory T
in the continuous cluster category Cr corresponds to a geodesic-triangulation of the hyperbolic
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plane h via the map:

ρ : {indecomposble objects in Cr} → {geodesics in h}

M(x,y) 7→ (e(x/r)πi, e((y/r)+1)πi).

So the cluster tilting subcategory in the previous example corresponds to a triangulation which
includes the following geodesics.

Remark 2.12.1. Let Cr be the continuous cluster category and {T } the cluster tilting struc-
ture as in the Proposition 2.11.1. Let ρ be the above map. Then:

(1) Each T corresponds to an ideal geodesic-triangulation of the hyperbolic plane.
(2) Each mutation of T in the direction of object Ti corresponds to Ptolemy mutation of

the geodesic ρ(Ti).
(3) All subcategories T are isomorphic.
(4) The group of orientation preserving homeomorphisms of the circle S1 acts transitively

on the cluster tilting subcategories {T }.
(5) Mutation of a cluster tilting subcategory corresponds to group action of order 4.

3. Continuous cluster categories II

Certain stable categories of Frobenius categories of representations of the circle S1 are shown
to have cluster structure. [IT11]

3.1. The representation of the circle S1. We define the representation of S1 = R/2πZ
over R = k[[t]]. Denote by [x] the equivalent class of points on S1 (under the equivalence
[x] = [x− 2π]). Define a representation V as follows:

At each point, V ([x]) is an R-module. For any 0 ≤ α ≤ 2π, the map V (x,α) : V ([x]) →
V ([x− α]) is an R-homomorphism, V (x,0) : V ([x]) → V ([x]) is the identity map and the map

V (x,2π) : V ([x]) → V ([x− 2π])(= V ([x])) is the multiplication by t, such that V (x,α+β) =

V (x−α,β) ◦ V (x,α).
Suppose V and W are two representations of S1, then a morphism f : V → W is defined

as a collection of R-homomorphisms {f[x]}[x]∈S1 , such that for all α ≥ 0 the following diagram
commutes:

V ([x])
f[x]

//

V (x,α)

��

W ([x])

W (x,α)

��

V ([x− α])
f[x−α]

// W ([x− α]).

The composition of morphisms are defined point-wise.
For each point [x] ∈ S1, we define the (indecomposable) projective representation P[x] as:

P[x]([y]) = R for all [y] ∈ S1, P
(y,α)
[x] = 1R for 0 ≤ α < 2π and P

(y,2π)
[x] is the multiplication by t.
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3.2. The Frobenius category G. The category G consists of indecomposable objects E(x, y) =

(P[x] ⊕ P[y], ϕ =

[
0 β
α 0

]
) where α : P[x] → P[y] is the unique morphism which is the iden-

tity at [x] and, β : P[y] → P[x] is the unique morphism which is the identity at [y] and

ϕ =

[
0 β
α 0

]
: P[x] ⊕ P[y]

ϕ→ P[x] ⊕ P[y] is a morphism induced by α and β, such that

ϕ2 =

[
t 0
0 t

]
.

• [x]

•[y] α

β

A morphism f : E(x, y) → E(x′, y′) is a morphism f : P[x] ⊕ P[y] → P[x′] ⊕ P[y′] such that
the following diagram is commutative:

P[x] ⊕ P[y]
ϕ
//

f

��

P[x] ⊕ P[y]

f

��

P[x′] ⊕ P[y′]
ϕ′
// P[x′] ⊕ P[y′].

Theorem 3.2.1. [IT11] G is a Frobenius category.

In fact, the projective-injective objects are E(x, x) = (P[x] ⊕ P[x],

[
0 t
1 0

]
). In G, for each

indecomposable object A, there is a sequence A
i→ Q

p→ ΣA, where i is the injective envelope
and p is the projective cover which can be described in the following way:

E(x, y) // E(y, y)⊕ E(x, x+ 2π) // E(y, x+ 2π)

(P[x] ⊕ P[y],

[
0 β
α 0

]
) (P[y] ⊕ P[y],

[
0 t
1 0

]
)⊕ (P[x] ⊕ P[x+2π],

[
0 1
t 0

]
) (P[y] ⊕ P[x+2π],

[
0 α
β 0

]
)

3.3. The stable category of G. Let G be the stable category of G, then G is a triangulated
category by Happel’s theorem.

Theorem 3.3.1. [IT11] The stable category of G is isomorphic to the continuous cluster cat-
egory, i.e. G ∼= Cr as triangulated categories.

Remark 3.3.2. With the above theorem, all the remarks about cluster tilting structure and
ideal triangulations of the hyperbolic plane hold for the cluster structure of G. The cluster
tilting subcategories in G corresponds to ideal triangulations of the hyperbolic plane. Mutations
in cluster tilting subcategories T correspond to Ptolemy mutations in the triangulation of the
hyperbolic plane. All cluster tilting subcategories are isomorphic and the isomorphisms can
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be viewed as homeomorphisms of S1. However, not all cluster tilting subcategories are in the
same mutation class.
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